71M6533- DB Demo Board User’s Manual
Voltage
Current lags
voltage
Positive
(inductive )
direction
+60°
Current
-60°
Current leads
voltage
(capacitive )
Voltage
Generating Energy
Using Energy
Figure 2-2: Phase Angle Definitions
The calibration procedures described below should be followed after interfacing the voltage and current sensors
to the 71M6533 chip. When properly interfaced, the V3P3 power supply is connected to the meter neutral and is
the DC reference for each input. Each voltage and current waveform, as seen by the 71M6533, is scaled to be
less than 250mV (peak).
2.2.1 CALIBRATION PROCEDURE WITH THREE MEASUREMENTS
Each phase is calibrated individually. The calibration procedure is as follows:
1)
2)
3)
4)
5)
6)
7)
8)
9)
The calibration factors for all phases are reset to their default values, i.e. CAL_In = CAL_Vn = 16384,
and PHADJ_n = 0.
An RMS voltage V ideal consistent with the meter’s nominal voltage is applied, and the RMS reading
V actual of the meter is recorded. The voltage reading error Axv is determined as
Axv = (V actual - V ideal ) / V ideal
Apply the nominal load current at phase angles 0° and 60°, measure the Wh energy and record the
errors E 0 AND E 60 .
Calculate the new calibration factors CAL_In , CAL_Vn, and PHADJ_n , using the formulae presented
in section 2.1.1 or using the spreadsheet presented in section 2.2.4.
Apply the new calibration factors CAL_In , CAL_Vn , and PHADJ_n to the meter. The memory
locations for these factors are given in section 1.9.1.
Test the meter at nominal current and, if desired, at lower and higher currents and various phase
angles to confirm the desired accuracy.
Store the new calibration factors CAL_In , CAL_Vn , and PHADJ_n in the EEPROM memory of the
meter. If the calibration is performed on a Maxim’s Teridian Demo Board, the methods involving the
command line interface, as shown in sections 1.9.3 and 1.9.4, can be used.
Repeat the steps 1 through 7 for each phase.
For added temperature compensation, read the value TEMP_RAW (CE RAM) and write it to
TEMP_NOM (CE RAM). If Demo Code 4.6n or later is used, this will automatically calculate the
correction coefficients PPMC and PPMC2 from the nominal temperature and from the characterization
data contained in the on-chip fuses.
Tip: Step 2 and the energy measurement at 0° of step 3 can be combined into one step.
Page: 39 of 75
`
REV 3
相关PDF资料
71M6534H-DB BOARD DEMO 71M6534H
71M6541F-DB DEMO BOARD 71M6541F
71M6543F-DB-CT DEMO BOARD 71M6543F-DB-CT
72-CNV-5 CONVERTER RS-232 TO RS-422 5V
72346-001 72346-1-SCA-II REC
72347-001LF CONN RECEPT SCA2 20POS VERT PCB
72436-001LF 80POS EXT HT. REC SCA-2
72442-201LF CONN RECEPT SCA2 80POS VERT PCB
相关代理商/技术参数
71M6533G 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Exceeds IEC 62053/ANSI C12.20 Standards
71M6533G-IGTR/F 功能描述:计量片上系统 - SoC AC Power Monitoring SoC-Programd RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533H 制造商:TERIDIAN 制造商全称:TERIDIAN 功能描述:Energy Meter IC
71M6533H-IEL 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IEL/F 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IELR 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IELR/F 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IGT/F 功能描述:计量片上系统 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel